[image:]
[image:]

EENG 498: Build IP for Zynq
You will need to start the process of creating custom IP from some existing Vivado project. This project does not need to have any relationship with the custom IP that you are creating in this howTo.
The goal of this step is to create the entity/architecture for the enhancedPwm_ip_v1_0 component shown in the diagram below. Look at Figure 1 and find the enhancedPWM component. Let’s explore where the signal on its entity are being routed to.
[image:]
[bookmark: _Ref135155068]Figure 1: The hierarchy of components needed to interface a custom module to the ARM cortex and the outside world.
The signals on the enhancedPwn interface will come from several different sources:
· clk and reset will come from the S_AXI signals coming in through the enhancedPwm_ip_v1_0_S00_AXI interface.
· enb, pwmSignal and rollOver will go outside the Zynq chip and connect to PL_KEY4, pin 3 on header J11 and the interrupt input on the Zynq respectively.
· dutyCycle and pwmCount will be written/read by a program that we will write for the ARM processor in a later stage.
The grey signal names on the entities in Figure 1 are part of the AXI interface and as such, not your concern – leave them alone. When a signal from your custom IP needs to leave the Zynq chip, you must add that signal to the two “enhancedPwm_ip_v1_0” interfaces.
When a signal from your custom IP needs to interface to the ARM processor, you need to deal with the slv_regX interface.
The following process is very detailed and you can easily make errors. So take your time, mind the details and try to stay focused. Good luck.
Create Custom IP:
Start by selecting Tools => Create and Package New IP….
You will be presented with the Create and Package New IP wizard:
Create Peripheral, Package IP: Click Next
[image:]
Create Peripheral, Package IP: Select Create AXI4 Peripheral. Click Next.
[image:]
Peripheral Details: Complete name and IP location. Click Next.
[image:]

Add Interfaces: Select 4 registers, leave all the other defaults alone. Click Next.
[image:]
Create Peripheral: Select the Add IP to repository radio button. Click Finish.
[image:]

You have just created an empty shell of the new IP.

[image:]
Before moving on, check to make sure that your IP wrapper will be created in VHDL. Do this my right mouse clicking on the enhancedPWM_v1.0 IP element and selecting IP Settings…

In the Settings pop-up, select Project in the Tool Settings area. Make sure that VHDL is selected as the Target Language.
[image: A screenshot of a computer

Description automatically generated with medium confidence]

It’s time to fill that shell with your custom logic. To do go to the IP Catalog tab, expand the User Repository -> AXI Peripheral and then right click on “enhancedPwm_ip_v1.0” and select “Edit in Packager”

[image:]
Leave the defaults. Click OK. If you are asked, click OK, to overwrite the previous version. A new invocation of Vivado will launch.
You will now package the enhancedPwm component into a form that will make it compatible to the AXI bus used by the Zynq processor. Start by adding enhancedPwm to the project. Do this by right clicking on Design Sources and selecting Add Sources…
[image:]
This will launch the Add Sources pop-up.
[image:]
Make sure “Add or create design sources” is selected. Click Next. This will launch the Add or Create Design Sources pop-up.
[image:]
Click Add Files. In the Add Source Files pop-up, navigate to the enhancedPwm, select the file, then click Open. Do the same for the genericCounter, genericCompare and basicBuildingBlocks_package. Make sure to check the “Copy sources into IP Directory. If you do not check this box and then delete this IP unit for any reasons, the linked sources files will also be deleted. Ask me how I know :/ Click Finish.

Edits to:	enhancedPwm_ip_v1_0_S00_AXI
Start by declaring the enhancedPwm as a component inside enhancedPwm_v1_0_S00_AXI.vhd Open the enhancedPwm.vhd file, copy the entity description for the enhancedPwm and then paste it into the enhancedPwm_v1_0_S00_AXI.vhd file below the signal declarations and just before the begin statement in the architecture. Then change the entity description into a component description as shown below.
[image:]
*Please note, your line numbers will be different as this screen shot represent the file when it was completed. You have only just started editing the file.

You now need to instantiate the enhancedPwm component inside the AXI file. Do this as follows.
In the “add user logic” section of the AXI file, instantiate the enhancedPwm component. The instantiation will:
· Have the ARM set the value of the dutyCycle input through the slv_reg0.
· Send the pwmCount output to a local signal called pwmCount_int and on the ARM through slv_reg1.
· The clk is provided by some external signal, S_AXI_CLK. You will see later that this is the common bus shared by all peripherals. This is important because it keeps your custom hardware synchronized with the ZYNQ processor.
[image:]
*Please note, your line numbers will be different as this screen shot represent the file when it was completed. You have only just started editing the file.
Line 370: Add the pwmCount_int signal as the value for reg_data_out in place of slv_reg1. This will allow the pwm counter to be read by the Zynq processor when the Zynq processor tries to read slv_reg1. Also add pwmCount_int to the sensitivity list.
[image:]

Just below your enhancedPwm component declaration you added earlier, add the declaration of pwmCount_int signal.

[image:]

Line 19: Add signals to the port description of enhancedPwm_ip_v1_0_S00_AXI. You will need to route these signals outside the Zynq chip. The 1-bits enb_ext will get its value from PL KEY4 and pwmSignal_ext will go to LED4 and rollover_ext will go to LED3.
[image:]

You are done editing enhancedPwm_ip_v1_0_S00_AXI. It’s now time to edit this file’s wrapper enhancedPwm_ip_v1_0

Edits to: enhancedPwm_ip_v1_0
You will need to send the enb_ext, pwmSignal_ext and rollover_ext signals outside this module. It’s fairly straightforward.

Line 94: Add signals to instantiation of enhancedPwm_ip_v1_0_S00_AXI.

[image:]

Line 59: Add signals to component declaration of my_counter_ip_v1_0_S00_AXI
[image:]

Line 19: Add signals to port description of my_counter_ip_v1_0
[image:]

Save all the files and check the sources area of the project manager tab once it is done updating. The enhancedPwm component should be part of the hierarchy and there should be no syntax errors.
[image:]

Now it’s time to finish packaging your IP. You will go through the packing steps in the Package IP tab. Each of these is taken in turn below. If you do not see the Package IP tab, click on

Identification – Leave alone
Compatibility – Leave along
File Groups – Click on “Merge changes from File Groups Wizard” This step saves the state of the project. You MUST do this before quitting otherwise you will loose all your work. Ask me how I know :/
[image:]

Customization Parameters – Click on “Merge changes from Customization Parameters Wizard”
[image:]

Ports and Interfaces – Notice that your enb_ext, pwmSignal_ext and rollover_ext signals have the correct direction and are part of the IP interface.
[image:]

Addressing and Memory – Leave defaults.
[image:]

Customizing GUI – Leave defaults. Notice that your enb_ext, pwmSignal_ext and rollover_ext are part of the block diagram. You will need to connect them in a coming step.
[image:]

Before completing the final step of the IP process, it is much easier if you clear up any syntax errors that you may have created. To do this, I like to run a simulation with the intention of weeding out errors, not to actually perform a simulation. The error will most likely be contained in a file in the source project that you created to generate this IP. In my case, this was:
lab04_oscopeHardware\lab04_oscopeHardware.tmp\acquirewithhdmi_v1_0_project\acquireWithHDMI_v1_0_project.sim\sim_1\behav\xsim
After weeding out the easy errors from the simulation. You might as well try to Generate Bitstream to weed out all elaboration errors from vector size mis-matches.
When you get all the errors corrected, you should be safe to complete the process to generate your IP.
Review and Package – Re-Package IP
[image:]

Click the Re-Package IP button and agree to close the project. You can close this project when it’s done.

One final step that will solve a lot of problems later needs to be done. Use the windows explorer to navigate to your ip_repo folder. From this folder navigate to:
...\enhancedPwm_1_0\drivers\enhancedPwm_v1_0\src
In this directory you should find the following files:
[image:]

Double click on Makefile and open it in Notepad. Replace the contents at the end of Makefile with the text shown in the Modify column below. Save and exit.
	Original
	Modify

	INCLUDEFILES=*.h
LIBSOURCES=*.c
OUTS = *.o

libs:
echo "Compiling myip"
$(COMPILER) $(COMPILER_FLAGS) $(EXTRA_COMPILER_FLAGS) $(INCLUDES) $(LIBSOURCES)
$(ARCHIVER) -r ${RELEASEDIR}/${LIB} $(OUTS)
make clean

include:
${CP} $(INCLUDEFILES) $(INCLUDEDIR)

clean:
rm -rf ${OUTS}
	INCLUDEFILES=$(wildcard *.h)
LIBSOURCES=$(wildcard *.c)
OUTS = $(wildcard *.o)

OBJECTS = $(addsuffix .o, $(basename $(wildcard *.c)))
ASSEMBLY_OBJECTS = $(addsuffix .o, $(basename $(wildcard *.S)))

libs:
	echo "Compiling myip"
	$(COMPILER) $(COMPILER_FLAGS) $(EXTRA_COMPILER_FLAGS) $(INCLUDES) $(LIBSOURCES)
	$(ARCHIVER) -r ${RELEASEDIR}/${LIB} ${OBJECTS} ${ASSEMBLY_OBJECTS}
	make clean

include:
	${CP} $(INCLUDEFILES) $(INCLUDEDIR)

clean:
	rm -rf ${OBJECTS} ${ASSEMBLY_OBJECTS}

It is very important that you have tabs on the statements following “libs:”, “include:”, and “clean:”. Ask me why :/ You are now done creating your custom IP. It’s time to integrate this IP with a Zynq processor.

1

1

10

image3.png
#' Create and Package New IP

Create Peripheral, Package IP or Package a Block Design
Please select one of the following tasks.

Packaging Options
() Package your current project
Use the project as the source for creating a new IP Definition.

ckage a block design from the current project

Choose a block design as the source for creating a new IP Definition,

() Package a specified directory
Choose a directory as the source for creating a new IP Definition.

Create AXI4 Peripheral

(@ [Create a new AXi4 peripheral
Create an AXI4 IP, driver, software test application, IP Integrator AXI4 VIP simulation and debug demonstration design.

image4.png
#' Create and Package New IP

Peripheral Details
Specify name, version and description for the new peripheral

Name: enhancedPwm
Version: 10
Display name: enhancedPwm_v1.0

Description: My new AXI IP

IP location: | C:/Users/chris/Dropbox/Mycourses/EENG498/VHDL fall2023/ip_repo

Overwrite existing

< Back

Einish

image5.png
#' Create and Package New IP

Add Interfaces
Add AXI4 interfaces supported by your peripheral

() Enable Interrupt Support + -

Name S00_AXI
Interfaces Interface Type Lite
I S00_AXI
Interface Mode Slave
Data Width Bits) | 32
< < Memory Size (Bytes) | 64
Number of Registers |4
> >

enhancedPwm_v1.0

® <

Einish

4.512]

image6.png
#' Create and Package New IP X

VIVADQY et Perphera

ML Editons Peripheral Generation Summary
1. 1P (xilinx.comuser:myacquireToHDML:1.0) with 1 interface(s)
2. Driver(v1_00_a) and testapp more info
3. AXI4 VIP Simulation demonstration design more info

4. AX14 Debug Hardware Simulation demonstration design more info

Peripheral created will be available in the catalog :
C:/Users/chris/Dropbox/Mycourses/EENG498/VHDL/mylpRepo

Next Steps:

(® Add IP to the repository

O EditIP
O Verify Peripheral IP using AXI4 VIP

(O Verify peripheral IP using JTAG interface

£ XILINX. Click Finish to continue

image7.png
PROJECT MANAGER - enhancedPwm

Sources 2 _ OO X |ProjectSummary x| IPCatalog X

Q T 2 + B 00 n

Cores | Interfaces

~ = Design Sources (7) W al = & ® w4 @ e
> ®: prelab04_enhancedPWM (Zcha
> @ generic8Registerfile(structure) (reg Search: | &
® flagRegister(behavior) (flagRegiste Name AT x4

® genericAdder(behavior) (genericAc

& nanaricAddarSiktractarihahaing Y

1 User Repository (c;/Users/chris/Dropbox/Mycourses/EENG498/VHDL_fall2023/ip_repo/en
= AXI Peripheral

% enhancedPwm_v1.0 AXi4

Hierarchy | Libraries Compile Order

> = Vivado Repository

1P Properties 2 _0O@X
enhancedPwm_v1.0 L
<

-~

Version: 1.0 (Rev. 1)
Details
Interfaces: AXi4
Description: My new AX P Name: enhancedPwm_v1.0
Status: Pre-Production Version: 1.0 (Rev. 1)
Interfaces: AXI4

License: Included v

Description: My new AXI IP

image8.png
4" Settings

Project Settings
General
Simulation
Elaboration
Dataflow
Synthesis
Implementation
Bitstream

> P

Tool Settings

Project
1P Defaults

> Vivado Store
Source File
Display
Help

> Text Editor
3rd Party Simulators

> Colors
Selection Rules
Shortcuts

> Strategies

> Window Behavior

Project
Specify various settings related to project.

Default Project Directory
Start in directory (C:/Users/Chris/AppData/Roaming/Xilinx/Vivado)
®) Last project’s directory
Home directory (C;/Users/Chris)
Desktop directory (C:/Users/Chris/Desktop)

Specify project directory:

Target Language
Verilog (®) VHDL
Recent
() Reopen last project on startup
Number of recent projects to list: 10 2
Number of recent directories to list. | 15 &

Number of recent files to list: 10 2

Record Highlight and Mark actions

() Record Tcl commands for Highlight and Mark actions on netlist objects

Relationally Placed Macro (RPM)

() Enable RPM support in Vivado GUI

image9.png
(. Editin IP Packager
0

Choose a project name and location for editing.

Project name: | enhancedPwm_v1_0_project

Project location: C:/Users/chris/Dropbox/Mycourses/EENG498/VHDL fall2023/preLab04/enhancedPwm/enhancedPwm.tmp
Edit IP project will be created at: .ncedPwm_v1_0_project

image10.png
I PROJECT MANAGER - my_counter_ip_v1_0_project

Hierarchy Update
Refresh Hierarchy

P Hierarchy

Copy Constraints Set...
Edit Constraints Sets...
Edit Simulation Sets...

=+ Add Sources...

Alt+A

&

ip_v1_.0whd) (1) v

< Fil
v cu

< Pol

SourceFilePre, 5 O@X

® my_counter_ip_v1_0vhd

v cu
L

image11.png
#' Add Sources X

Add Sources

VIVADO?

e This guides you through the process of adding and creating sources for your project

(O Add or create constraints

) Add or create design sources

(Add or create simulation sources

£ XILINX.

< Back Einish

image12.png
' Add Sources

Add or Create Design Sources.

SpectyHDL e, Block Desig a1 o e contiio thos e s 084 10 your prjct Gt aomsce lecncisk 1

1 add it 0 your project.

Index Name.
' ‘genericComparatorhd
geneicCountershd
basicBuldingBlocks\nal packagerhd
emancedpamand

scoe

Gbray
. setautiv
i detotiv
. detouttis
s setautiv

Locaion
ClUsers/chis/Dropbox/Mycouses[EENGASBNHDL fal2023 basic
CAUsers/chis/Dropbox/Mycouses[EENGASBNHDL fal2023/vasic
C/Users/chs/Dropbox/Mycourses EENGASE/VHDL fal2023 basic
C/Users/chis/Dropbox/Mycourses EENGASB VDL 1al2023prels

(0 Scan ant a0 L inclue fes o project
] Copy sowces no P Directory

image13.png
1239 component enhancedPwm is

124 | PORT (clk : in STD_LOGIC;
125 1 resetn : in STD_LOGI

126 ! enb: in STD_LOGIC;

127 | dutyCycle: in STD_LOGIC_VECTOR(S downto 0
128 | pwmCount: out STD_LOGIC VECTOR(7 downto 0
129 ! rollover: out STD_LOGIC;

130 | pwmSignal: out STD_LOGIC);

1318 end component;

image14.png
412
413

-- add user logic here
enhancedPum_inst: enhancedPwm

PORT MAB (

clk => S_AXT_ACIK,

S_AXI_ARESETN,
enb => enb_ext,
dutyCycle => slv_reg0(8 downto 0),
pwmCount => pwmCount_int,
rollover => rollover_ext,

resetn

pwnSignal => pwmSignal ext);

- User logic ends

-- Read at slv_regl

image15.png
srocess (slv_reg0, slv_regl, slv_reg2, slv_reg3, axi_araddr, S_AXI_ARESETN, slv_reg_rde:
rariable loc_addr :std_logic_vector (OPT_MEM_ADDR BITS downto 0)

segin

-- Address decoding for reading registers
axi_araddr (ADDR_LSB

loc_addr
case loc_addr is
when b"00" =>

reg_data_out
when b"01

reg_data_out
when b"10

reg_data_out
when b"11

reg_data_out
when others =>
reg_data_out

end case

process;

<=

slv_reg0;

slv_reg2;

slv_reg3;

(others =>

+ OPT_MEM ADDR_BITS downto ADDR_LSB);

“on

pumCount_ind)

image16.png
rollover: out STD_LOGIC;
pwmSignal: out STD_LOGIC);

end component;

signal pwmCount_int : STD_LOGIC_VECTOR(7 downto O

image17.png
enb_ext: in STD_LOGI
pwmSignal_ext: out STD_LOGIC;
gollover_ext: out STD_LOGIC;
ports ends

-~ Do not modify the Ports beyond this line

- Global Clock Signal
S_AXI_ACLE : in std logic;

image18.png
85
50
51
52
53
54
55
56
57
98
59

-- Instantiation of Axi Bus Interface 500 AXT

enhancedPum_v1_0_S00_AXI_inst : enhancedPwm_vl_0_SO0_AXT

generic map (

C_S_AXI_DATA WIDTH => C_SO0_AXI_DATA WIDTH,
C_S_AXI_ADDR_WIDTH => C_SO0_AXI_ADDR WIDTH

rollover_ext

S_AXI_ARESETN
S_AXI_AWADDR

)_e enb_ext,
pwnSignal_ext => pwmSignal_ext,

rollover_ext,

=> 500_axi_aresetn,

=> 500_axi_awaddr,

image19.png
53
54
55
s6
57
58
59
60
61
62
€3

-- component declaration
cemponent enhancedewm_vl_0_SO0_AXI is

generic (
© S AXI DATA WIDTH : integer
© S AXI ADDR WIDTH : integer
)

port

TEb_ext: in STD_LOGIC;
pwmSignal_ext: out STD_LOGIC,
ollover ext: out STD_LOGIC;
S_AXT]

image20.png
18

19 enb_ext: in STD_LOGIC;

20 . pwmSignal_ext: out STD_LOGIC;

21} rollover_ext: out STD_LOGIC;

229 =n

23 Do not modify the ports beyond this line
2¢)

25

266 - Ports of Axi Slave Bus Interface 500 AXT
271 500_axi_aclk : in std logic;

image21.png
PROJECT MANAGER - enhancedPwm_v1_0_project

Sources ?_00X
Q = £ + 0 &
= Design Sources (2)
@ = enhancedPwm_v1_0(arch_imp) (enhancedPwm_v1_0vhd) (1)
@ enhancedPwm_v1.0_S00_AXI_inst : enhancedPwm_v1.0_S00_AXI(arch imp)
> @ enhancedPwm_inst : enhancedPwm(behavior) (enhancedPWh.vhd) (3)
phleie it L
> = IP-XACT (1)
> Constraints

3
£
3
2
g
&
2
g
5
3
a

> = Simulation Sources (1)
> = Utility Sources

image22.png
Package IP - enhancedPwm

@ Merge changes from File Groups Wizard

Q = & =4 + C

V Identification

¥ Compatibility
Library Is File Group
Pz e Name Name P Include Name Socelland
2 Customization Parameters Standard
~ = Advanced
2 Ports and Interfaces 5 & VHDL Synthesis enhancedPum.y10

> = VHDL Simulation (2)

> = Software Driver (6)
2 Customization GUI > = Ullayout (1)

< Addressing and Memory enhancedPwm _v1_0

2 Review and Package > Block Diagram (1)

image23.png
Package IP - enhancedPwm

¥ Identification

¥ Compatibility

© File Groups

2 Customization Parameters
2 Ports and Interfaces

¥ Addressing and Memory
2 Customization GUI

2 Review and Package

Customization Parameters

@ Merge changes from Customization Parameters Wizard

Q

"
@

=+ C

Name

v = Customization Parameters
£ C_S00_AXI_DATA_WIDTH
C_S00_AXI_ADDR_WIDTH
4 C_SO0_AXI_BASEADDR
£ C_SO0_AXI_HIGHADDR

Description

Width of S_AXI data bus
Width of S_AXI address bus

Display Name

C 500 AXI DATA WIDTH
C 500 AXI ADDR WIDTH
C 500 AXI BASEADDR
C 500 AXI HIGHADDR

Value

32

4
OXFFFFFFFF
0x00000000

Value Bit Strin
Length

32
32

image24.png
Project Summary % Package IP - enhancedPwm

Packaging Steps Ports and Interfaces © 1

¥ Identification Q = = +
 Compation N Interface Enablement - Diiver Size Size
mpatibility fame Mode Dependency UM value Left Right
2 File Groups > @ S00AXI slave
> Clock and Reset Signals

¥ Customization Parameters

[enb_ext in
@ Ports and Interfaces 0 pwmSignal_ext out

4 rollOver_ext out

< Addressing and Memory
¥ Customization GUI

Review and Package

image25.png
PROJECT MANAGER - enhancedPwm_v1_0_project

Package IP - enhancedPwm

2
£
H
g
g
< || Packaging Steps Addressing and Memory
|
2 z 2
2| v ienfication I
-}
Name Display Name
Z|| v compativility 2
= 500_AXI
O File Groups
H Address Blocks
5| v customization Parameters
2 Name DisplayName Description Base Address Range
¥ Ports and Interfaces = S00_AXreg 0 4096
< Addressing and Memory
Address Block Parameters
¥ Customization GUI
Name Description Display Name

2 Review and Package
% OFFSET_BASE_PARAM

OFFSET_HIGH_PARAM

Description
sn

Range Dependency ~ Width
32

Value Value Sou

C_S00_AXI_BASEAT default
C_S00_AXI_HIGHAC default

image26.png
Project Summary % Package IP - enhancedPwm

Packaging Steps Customization GUI

v

Identification Layout
Compatibility Q = % +
File Groups [Window
% Component Name

Customization Parameters v B Page0
Ports and Interfaces % €500 AXI DATA WIDTH

% €500 AXI ADDR WIDTH
Addressing and Memory # CS00 AXI BASEADDR

CS00 AXI HIGHADDR

[Hidden Parameters

Customization GUI

Review and Package

4 sooma
eno_ext
s00_x1_sck

Q 500 axi_aresetn

() show disabled ports Component Name enhancedPwm_0

C 500 AXI DATAWIDTH | 32

C 500 AXI ADDR WIDTH 4

CS00 AXI BASEADDR OXFFFFFFFF

C 500 AXI HIGHADDR 0x00000000

pwmsignal_ext
rollOver_ext

image27.png
PROJECT MANAGER - enhancedPwm_v1_0_project

Sources 2 _ O x Package IP - enhancedPwm
Q = & + [-}

v DesignSources (2) o moe o T
2 1P has been modified. 8wamings 2 info messages

IP Address Block Properties

@ enhancedPwm v 0Gich o) (L gendtication
* @ enhancedPwm_v1_0_S00_AXLir
> @ enhancedPwm _inst : enhan ' Compatibility Summary
> & IP-XACT (1) © File Groups Display name: enhancedPwm_v1.0
> = Constraints Description: My new AXI IP based on PWM module
> = Simulation Sources (1) /. Customization Parameters Root directory: c:/Users/chris/Dropbox/Mycourses/EENG498/VHDL fall2023/ip_repo/enhancedPwm_1.0

> = Utlity Sources
v + Ports and Interfaces

< Addressing and Memory After Packaging

< Customization GUI An archive will not be generated. Use the settings link below to change your preference

Project will be removed after completion

2 Review and Packa
CEVE e ELE Edit packaging settings

=

Re-Package IP

Hierarchy | Libraries Compile Order

image28.png
T s

Home Share View

& 5 v 1 1 « EENGA98 > VHDLfall2023 > ip_repo > enhancedPwm_1.0 > drivers > enhancedPwm.vi_0 > sic v o
Name Date modified Type Size
> s Quick access
o/ enhancedPwm 5/18/2023 10:16 AM CFile
> &% Dropbox) enhancedPwm 5/18/2023 10:16 AM HFile
5 7 OneDrive o) enhancedPwm_selftest 5/18/2023 10:16 AM CFile
&) Makefile 5/18/2023 11:22 AM File
> = This PC
> & Network
4items 1 item selected 631 bytes

P Searchsrc

1KB
3KB
2KB
1KB

X

image1.png
enhancedPwm_ip_v1_0

enb_ext ———
rollOver_ext <——
pwmSignal_ext «—

enhancedPwm_ip_v1_0_S00_AXI

enb_ext

rollOver_ext
pwmSignal_ext

slv_reg0.
Siv_reg1
SIvV_reg2.
SIv_reg3.

pwmCount_int

1

i data

S_AXI_ACLK _

S_AXI_ARESETN _

enb_ext

slv_reg0 g,

pwmCount_int g
rollOver_ext

e T
pwmSignal_ext

enhancedPwm

clk

resetn

enb
dutyCycle
pwmCount
rollOver
pwmSignal

image2.png
#' Create and Package New IP

VIVADO?

ML Editions

£ XILINX.

Create and Package New IP
This wizard can be used to accomplish following tasks:
Package a new IP for the Vivado IP Catalog

This wizard will guide you through the process of creating a new Vivado IP using source files and information from
your current project, block design or specified directory.

Create a new AXI4 Peripheral

This wizard will guide you through the process of creating a new AXI4 peripheral which includes HDL, driver, software
test application, IP Integrator VIP simulation and debug demonstration design.

Click Next to continue

image29.png
ELECTRICAL ENGINEERING DEPARTMENT

* COLORADO SCHOOL OF MINES

